
Problem 5094. Let a, b, c be real positive numbers such that a+b+c+2 = abc.
Prove that

2
(
a2 + b2 + c2

)
+ 2(a + b + c) ≥ (a + b + c)2
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We will use the ”magical” substitution given in ”Problems from the book”
of Titu Andreescu e Gabriel Dospinescu, which is explained in the following

Lemma. If a, b, c are positive real numbers such that a + b + c + 2 = abc, then
there exists three real numbers x, y, z > 0 such that

a =
y + z

x
, b =

z + x

y
, c =

x + y

z
(*)

Proof. By means of a simple computation the condition a + b + c + 2 = abc can
be written in the following equivalent form

1
1 + a

+
1

1 + b
+

1
1 + c

= 1

Now if we take
x =

1
1 + a

, y =
1

1 + b
z =

1
1 + c

then x + y + z = 1 and a = 1−x
x = y+z

x . Of course, in the same way we find
b = z+x

y , c = x+y
z . �

By using the substitution (*), after some boring calculations, the given in-
equality rewrites as

z4(x− y)2 + x4(y − z)2 + y4(x− z)2 + 2
(
x3y3 + x3z3 + y3z3 − 3x2y2z2

)
x2y2z2

≥ 0

which is true since
x3y3 + x3z3 + y3z3 ≥ 3x2y2z2

in virtue of AM-GM inequality. �
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